Green-tao Theorem in Function Fields

نویسنده

  • THÁI HOÀNG LÊ
چکیده

We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite fields, to show that for every k, the irreducible polynomials in Fq[t] contains configurations of the form {f + P g : deg(P) < k}, g = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green-tao Theorem in Function Fields

We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite field, to show that for every k, the irreducible polynomials in Fq[t] contain configurations of the form {f + P g : deg(P) < k}, g = 0.

متن کامل

The Green-tao Theorem: an Exposition

The celebrated Green-Tao theorem states that the prime numbers contain arbitrarily long arithmetic progressions. We give an exposition of the proof, incorporating several simplifications that have been discovered since the original paper.

متن کامل

New Proofs of the Green–Tao–Ziegler Dense Model Theorem: An Exposition

Green, Tao and Ziegler [GT, TZ] prove “Dense Model Theorems” of the following form: if R is a (possibly very sparse) pseudorandom subset of set X , and D is a dense subset of R, then D may be modeled by a set M whose density inside X is approximately the same as the density of D in R. More generally, they show that a function that is majorized by a pseudorandom measure can be written as a sum o...

متن کامل

Arithmetic progressions in multiplicative groups of finite fields

Let G be a multiplicative subgroup of the prime field Fp of size |G| > p1−κ and r an arbitrarily fixed positive integer. Assuming κ = κ(r) > 0 and p large enough, it is shown that any proportional subset A ⊂ G contains non-trivial arithmetic progressions of length r. The main ingredient is the Szemerédi-Green-Tao theorem. Introduction. We denote by Fp the prime field with p elements and Fp its ...

متن کامل

A Short Proof of the Multidimensional Szemerédi Theorem in the Primes

Tao conjectured that every dense subset of P, the d-tuples of primes, contains constellations of any given shape. This was very recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler. Here we give a simple proof using the Green-Tao theorem on linear equations in primes and the Furstenberg-Katznelson multidimensional Szemerédi theorem. Let PN denote the set of pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009